Navigation auf uzh.ch
* Corresponding author, † Co-first author
Journal Articles
Macrocycle-based hydroxamate ligands for stable complexation and immunoconjugation of the PET Isotope 89Zr
ChemPlusChem, 2016, in press. DOI: 10.1002/cplu.201600003.
Immuno-PET imaging of CD-30 positive lymphoma using 89Zr-DFO-AC-10
J. Nucl. Med., 2016, 57, 96-102. DOI: 10.2967/jnumed.115.162735.
Computational studies on hypervalent iodonium(III) compounds as activated precursors for 18F radiofluorination of electron-rich arenes
Comput. Theor. Chem., 2015, 1066, 34-56. DOI: 10.1016/j.comptc.2015.05.012.
PET neuroimaging studies of [18F]CABS13 in a double transgenic mouse model of Alzheimer’s disease and nonhuman primates
ACS Chem. Neurosci., 2015, 6, 535-541. DOI: 10.1021/acschemneuro.5b00055.
Iodonium ylide mediated radiofluorination of 18F-FPEB and validation for human use
J. Nucl. Med., 2015, 56, 489-492. DOI: 10.2967/jnumed.114.151332.
Evaluating the accuracy of density functional theory for calculating 1H and 13C NMR chemical shifts in drug molecules
Comput. Theor. Chem., 2015, 1051, 161-173. DOI:10.1016/j.comptc.2014.11.007.
Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles
Chem. Sci., 2015, 6(1), 225-236. DOI: 10.1039/C4SC02778G.
Charting the mechanism and reactivity of zirconium oxalate with hydroxamate ligands using density functional theory: implications in new chelate design
Dalton Trans., 2014, 43, 9872-9884. DOI: 10.1039/C4DT00733F. Highlighted as the “Cover Picture,” July 2014.
Pycup – A bifunctional, cage-like ligand for 64Cu radiolabelling
Mol. Pharmaceuticals, 2014, 1(2), 617-629. DOI: 10.1021/mp400686z.
Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 2093-2105. DOI: 10.1007/s00259-014-2830-7.
Alternative approaches for PET radiotracer development in Alzheimer’s disease: Imaging beyond plaque
J. Labelled Compds Radiopharm., 2014, 57, 323-331. Highlighted as the “Cover Picture”. 2014. DOI: 10.1002/jlcr.3158.
11CO2 Fixation: A renaissance in PET radiochemistry
Chem. Commun., 2013, 49, 5621-5629. DOI: 10.1039/C3CC42236D. Highlighted as the “Cover Picture”. 2013.
Synthesis and evaluation of biphenyl derivatives as kinesin spindle protein inhibitors
Chem. Biodiversity, 2013, 10(4), 538-555. DOI: 10.1002/cbdv.201200400.
Monitoring afatinib treatment in HER2 positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET
J. Nucl. Med., 2013, 54, 936-943. DOI: 10.2967/jnumed.112.110239. Featured in a “Health Imaging” press release.
Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression
Bioorg. Med. Chem., 2013, 21, 496-507. DOI: 10.1016/j.bmc.2012.11.013.
PET imaging of enzymes in the brain
Amer. J. Nucl. Med. Mol. Imaging, 2013, 3(3), 194-216. Link.
Imaging tumor burden in the brain with 89Zr-transferrin
J. Nucl. Med., 2013, 54(1), 90-95. DOI: 10.2967/jnumed.112.109777. Highlighted as the “Cover Picture,” January 2013.
Annotating MYC status with 89Zr-transferrin imaging
Nature Med., 2012, 18, 1586-1591. DOI: 10.1038/nm.2935. Featured in a SciBX press release.
Imaging androgen receptor signaling with a radiotracer targeting prostate specific antigen
Cancer Discovery, 2012, 2(4), 320-327. DOI: 10.1158/2159-8290.CD-11-0316. Highlighted as the “Cover Picture,” April 2012. Featured in an AACR video press conference and in a “Spotlight” article.
PET of signal transduction pathways in cancer
J. Nucl. Med., 2012, 53(9), 1333-1336. DOI: 10.2967/jnumed.112.105387.
18F-radiolabeling of aromatic compounds using triarylsulfonium salts
Eur. J. Org. Chem., 2012, 2012(5), 889-892. DOI: 10.1002/ejoc.201101730.
PET imaging of therapy-induced prostate cancer cell death by targeting the internal epitope of prostate specific membrane antigen
J. Nucl. Med., 2011, 52(10), 1608-1615. DOI: 10.2967/jnumed.111.092098.
Intra-operative imaging of PET radiotracers using Cerenkov luminescence emissions
Mol. Imaging, 2011, 10(3), 177-186. DOI: 10.2310/7290.2010.00047.
Magnitude of enhanced permeability and retention (EPR) effect in tumors with different phenotypes: 89Zr-albumin as a model system
J. Nucl. Med., 2011, 52(4), 625-633. DOI: 10.2967/jnumed.110.083998.
Imaging and treating tumor vasculature with radiolabeled carbon nanotubes
Int. J. Nanomedicine, 2010, 5, 783-802. DOI: 10.2147/IJN.S13300.
Synthesis, electronic structure, and reactivity of nickel-, palladium-, and platinum-bridged [1]ferrocenophanes
J. Amer. Chem. Soc., 2010, 132(38), 13279-13289. DOI: 10.1021/ja103367e.
Zirconium-89 chemistry in the design of novel radiotracers for immuno-PET
Technetium and Other Radiometals in Chemistry and Medicine, Eds: Ulderico Mazzi, William C. Eckelman, Wynn A. Volkert, Publisher: Servizi Grafici Editoriali snc, Padova, Italy, 2010, 187-192.
89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo
J. Nucl. Med., 2010, 51(8), 1293-1300. DOI: 10.2967/jnumed.110.076174. Selected as the Journal of Nuclear Medicine’s Editor’s Choice Award for the “Best Basic Science Article,” June 2011.
Cerenkov luminescence imaging of medical isotopes
J. Nucl. Med., 2010, 51(7), 1123-1130. DOI: 10.2967/jnumed.110.076521. Highlighted in a press release by the Society of Nuclear Medicine.
Investigation of the UV–Vis absorption of bis(N-methylthiosemicarbazonato) zinc Zn[ATSM]
Inorganica Chim. Acta, 2010, 363(6), 1133-1139. DOI: 10.1016/j.ica.2009.10.006.
Clickable bifunctional radiometal chelates for peptide labeling
Chem. Commun., 2010, 46, 1706-1708. DOI: 10.1039/b924784j.
Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes
J. Comput. Chem., 2010, 31(5), 1008-1014. DOI: 10.1002/jcc.21385.
Nitrite reduction by copper complexes
Dalton Trans., 2010, 35, 1576-1585. DOI: 10.1039/b913463h.
Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab
PLoS ONE, 2010, 5(1), e8859. DOI: 10.1371/journal.pone.0008859.
Pyrene-functionalised copper complexes as potential dual-modality imaging agents
Eur. J. Inorg. Chem., 2010, (1), 48-58. DOI: 10.1002/ejic.200900823. Highlighted as the “Cover Picture,” January 2010.
Unconventional nuclides for radiopharmaceuticals
Mol. Imaging, 2010, 9(1), 1-20. DOI: 10.2310/7290.2010.00008.
Functionalised copper-64 bis(thiosemicarbazonato) complexes as precursors of potential PET imaging agents for neurodegenerative disorders
New J. Chem., 2009, 33, 1845-1852. DOI: 10.1039/b902895a. Top 10 New J. Chem. downloaded articles, September 2009.
Standardized methods for the production of high specific-activity zirconium-89
Nucl. Med. Biol., 2009, 36, 729-739. DOI: 10.1016/j.nucmedbio.2009.05.007. #1 Highest cited article in NMB since 2009.
Macrocyclic diamide ligand systems: potential chelators for 64Cu- and 68Ga-based positron emission tomography imaging agents
Inorg. Chem., 2009, 48(15), 7117-7126. DOI: 10.1021/ic900307f.
Synthesis and reactivity of a silicon-bridged [1]ferroceniumphane
Angew. Chem. Int. Ed., 2009, 48, 4961-4964. DOI: 10.1002/anie.200901213.
Computational studies on the Pt(II)-catalyzed cycloisomerization of 1,6-dienes into bicyclopropanes: A mechanistic quandary evaluated by DFT
Organometallics, 2009, 28, 2038-2045. DOI: 10.1021/om800770x.
In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals
Phys. Med. Biol., 2009, 54, 2103-2119. DOI: 10.1088/0031-9155/54/7/017.
Electronic absorption spectroscopy and time-dependent density functional theory calculations on the nickel(II) complex of 1,4-bis(pyrrol-2-ylmethyleneamino)butane
Inorganica Chim. Acta, 2009, 362(2), 402-406. DOI: 10.1016/j.ica.2008.04.031.
Copper-64-radiopharmaceuticals for oncologic imaging
PET Clinics, 2009, 4(1), 49-67. DOI: 10.1016/j.cpet.2009.04.013.
Assessing tumor hypoxia by positron emission tomography with Cu-ATSM
Q. J. Nucl. Med. Mol. Imaging, 2009, 53, 193-200. Link.
Rapid decomplexation of bis(thiosemicarbazonato)zinc(II) complexes using citric acid
J. Chem. Res., 2008, 12, 702-703. DOI: 10.3184/030823408X380731.
In vitro and in vivo evaluations of a hydrophilic 64Cu-bis(thiosemicarbazonato)–glucose conjugate for hypoxia imaging
J. Nucl. Med., 2008, 49, 1862-1868. DOI: 10.2967/jnumed.108.054015.
Controlled axial ligation: solid-phase synthesis and purification of metallo-radiopharmaceuticals
Angew. Chem. Int. Ed., 2008, 47(44), 8416-8419. DOI: 10.1002/anie.200801936.
Synthesis, X-ray crystallography, spectroelectrochemistry and computational studies on potential copper-based radiopharmaceuticals
Eur. J. Inorg. Chem., 2008, 3549-3560. Highlighted as a “EurBest” article, 20th August 2008. DOI: 10.1002/ejic.200800413.
(2-Hydroxyphenylimido-κN)-(methanolate-κO)[2-oxidobenzylideneamino)phenlate-κ2O,N,O']-(triphenylphosphine-κP)rhenium(V)
Acta Crystallogr. E, 2008, E64, m773. DOI: 10.1107/S1600536808010684.
Spectroelectrochemical and computational studies on the mechanism of hypoxia-selectivity of copper radiopharmaceuticals
Chem. Eur. J., 2008, 14, 5890-5907. DOI: 10.1002/chem.200800539.
Synthesis, radiolabelling and confocal fluorescence microscopy of styrene derivatised zinc and copper bis(thiosemicarbazonato) complexes
Eur. J. Inorg. Chem., 2008, 1985-1993. DOI: 10.1002/ejic.200701351.
In vitro assays for assessing the stability of new potential copper-based radiopharmaceuticals
Q. J. Nucl. Med. Mol. Imaging, 2008, 52(3), 235-244. Link.
Towards new copper based radiopharmaceuticals
Q. J. Nucl. Med. Mol. Imaging, 2008, 52(2), 174-184. Link.
Synthesis and molecular and electronic structure of an unusual paramagnetic borohydride complex Mo(NAr)2(PMe3)2(h2-BH4)
Inorg. Chem., 2007, 47, 999-1006. DOI: 10.1021/ic701826v.
Functionalized bis(thiosemicarbazonato) complexes of zinc and copper: Synthetic platforms towards site-specific radiopharmaceuticals
Inorg. Chem., 2007, 46, 465-485. DOI: 10.1021/ic0615628.
Probing the mechanism of hypoxia-selectivity of copper bis(thiosemicarbazonato) complexes: DFT calculation of redox potentials and absolute acidities in solution
Dalton Trans., 2006, 6, 783-794. DOI: 10.1039/b512656h. Highlighted as a “Hot Article” and reviewed in Chemistry World, January 2006.
Requirement for an oxidant in Pd/Cu co-catalyzed terminal alkyne homocoupling to give symmetrical 1,4-disubstituted 1,3-diynes
J. Org. Chem., 2005, 70, 703-706. DOI: 10.1021/jo048428u.
Books and Chapters
Hypoxia-Selective Copper Radiopharmaceuticals: Rational Design of Novel Imaging Agents
VDM-Verlag, Germany, 15th May 2009. ISBN-13: 978-3-639-15244-9. ISBN-10: 3639152441. (Thesis book)
Radiopharmaceuticals for imaging in oncology with special emphasis on positron-emitting agents
Chapter 3 in Nuclear Oncology – Pathophysiology and Clinical Applications, Eds. H. William Strauss, Giuliano Mariani, Duccio Volterrani, Steven M. Larson. Springer. 2012. ISBN-13: 978-0387488936. ISBN-10: 0387488936. (Book chapter)